If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+10d-12=0
a = 8; b = 10; c = -12;
Δ = b2-4ac
Δ = 102-4·8·(-12)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-22}{2*8}=\frac{-32}{16} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+22}{2*8}=\frac{12}{16} =3/4 $
| 15+4x=x-3-3 | | 5n+3+4n=2 | | 2^(x-1)=360 | | 8x-6=2-x+8x | | -60=4(-2+4n)-3n | | 8x-6=2-x+8 | | 2·x+40=10 | | |-4x+7|=15 | | r+48;r=8 | | 2=1/2n+9 | | 12/5(f)=-18 | | 5x+3=4x−6 | | 53x-18+7x=225 | | 5(3x-3)=12x-4 | | 4(k+2)=36 | | 2x(x+3)=2x^2+2x+6 | | -4(1-4b)=44 | | 96=-8(b-6) | | -4n=-6n+2n | | -114=-6(3x-5) | | 8(-3x-3)=-120 | | -2(-6b+2)=92 | | -2+26x+36=19x-3 | | 8x+5(43.50-2x)=180.50 | | 5/6c-10=5 | | -160=-8(3a+5) | | 3p+7=2p-5 | | -6(6+5n)=34+5n | | -15=x/13 | | u+4.93=6.81 | | w+5.52=8.15 | | 2x+13+60=-4+9x |